

QUEEN'S UNIVERSITYIONIC LIQUID
LABORATORIES

QUILL

Hydrophobic low melting mixtures for biogas upgrading

Mark Young

Supervisors:

Dr. Leila Moura

Prof. John Holbrey

Prof. Sophie Fourmentin

Confidential 25/03/24

What is biogas?

Product of anaerobic digestion

Carbon neutral energy source

Under-utilised energy source

No large industrial shift

The problem

Methane needs to be separated from the contaminants

Around 50% of the gas volume is contaminants

Removal is currently costly and hazardous

Current industrial technologies

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Liquid scrubbing – Chemical sorbents (alkanol amines)

Physical scrubbing (Water, Selexol process)

PSA and TSA using porous solids – Zeolites, MOFs, COFs, PCPs

Membranes

Cryogenic methods

Biological methods – Algal, bacterial conversion of CO₂

Bioresour. Technol., 2019, **279**, 43–49. Chem. Soc. Rev., 2013, **42**, 9304–9332. Angew. Chemie Int. Ed., 2017, **56**, 14246–14251. Y. Xie, C. Ma, X. Lu and X. Ji, Appl. Energy, 2016, **175**, 69–81. Rev. Environ. Sci. Bio., 2015, **14**, 727–759

Water scrubbing

Organic scrubbing

Chemical scrubbing

/

What limits industrial application?

QUEEN'S UNIVERSITY
IONIC LIQUID
LABORATORIES
QUILL

Costs:

Performance

Materials

Operational

Hazards

Why do I have a PhD project if we have all these options?

Upgrading processes are industrially mature

New materials are necessary for improved performance and sustainability

Project goal – create high performance physisorbant materials at low cost with a low environmental footprint

Phosphine oxide based low melting mixtures (LMMs)

- TOPO is an industrial extractant for various process
 - TOPO based DES previously reported
 - Never been applied to gas separation
- Low vapour pressure and low viscosity materials
- Possibility to have strong interactions with CO₂ without chemisorption

Headspace GC screening method

Screened CO₂ capacities

- Capacities for CO₂ calculated at 1 bar and 35°C
- All phosphine oxide based LMMs have high capacities for CO₂

 Many phosphine oxide based LMMs have higher capacities than one of the best physisorbent It s (pink)

Accurate gas measurements

- Good agreement with previous screening method (both trends and values)
- Comparable capacities to genosorb 1753
- Higher capacity than IL, DES and water

Ideal selectivity

- QUEEN'S UNIVERSITY BELFAST
- QUEEN'S UNIVERSITY
 IONIC LIQUID
 LABORATORIES
 QUILL

- Ideal selectivities were based on a ratio of K_H (molality)
- Higher selectivities are observed at lower temperatures
- Information could be utilised for regeneration

Ideal selectivity =
$$\frac{Kh_{CO2}}{Kh_{CH4}}$$

Gas sorption mechanism

- Results achieved by bubbling CO₂ through liquids in an NMR tube
- ¹³C NMR peak at ~124 ppm represents physiosorbed CO₂
- No sign of carbonate, carbamate or carboxylate peak appearing in ¹³C NMR 160-185 ppm
- Indicates possible low energy of regeneration for these materials

VOC removal

- Volatile organics are an important type of contaminant found in biogas
- Lower partition coefficients indicate better VOC absorption by a liquid
- Toluene used as a standard
- Several other VOC classes were tested showing similar trends

Physico-chemical properties

- While capacity and selectivity are important there are other factors
- PO based LMMs have variable viscosity dependant on HBD
- PO based materials also have low densities when compared with many other liquids

Cost and hazards of liquid sorbents

Future work

Publish findings

Write thesis

Finish PhD

Acknowledgements

- Dr. Leila Moura
- Prof. John D.Holbrey
- Prof. Sophie Fourmentin
- Prof. Panagiotis Manesiotis
- Sam McCalmont
- Dr. Emily Byrne
- QUILL research centre
- Dr. Peter Klusener

